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Abstract—In the face of anticipated persistent cyber attacks
it may be desirable to preemptively isolate critical comput-
ing applications in hardware. We describe an investigation
into providing preemptive hardware isolation by automating
the transformation of binaries targeted for general-purpose
processors (GPPs) into circuitizable finite state machine with
datapath (FSMD) descriptions that are impervious to many
vulnerabilities associated with GPPs. These generated FSMDs
contain no program memory and do not require access to external
data memory, so conventional exploits predicated upon memory
manipulation are eviscerated. We show how such descriptions
can be used to increase the security and resilience of high-
risk applications that would otherwise be deployed as software
hosted on a GPP, and discuss situations where this may be
desirable. We describe a prototype tool that transforms binaries
targeted for the Intel 8051 into circuitizable custom FSMDs, and
discuss how the prototype transforms common programmatic
constructs in ways that often mitigate and sometimes negate the
vulnerabilities contained within the original binaries. The Intel
8051 was chosen for this initial investigation because it is often
used in modern USB controllers, and is representative of a class
of GPPs that are ubiquitous in embedded systems. We show how
interrupt-driven binaries are transformed by the prototype, and
discuss techniques used to increase the computational density and
decrease interrupt servicing latencies of FSMDs derived from
interrupt-driven binaries. Our findings indicate that the proto-
type is capable of automatically generating circuitizable custom
machine descriptions that significantly reduce the likelihood of
compromise by conventional remote-origin attacks.

Index Terms—computer security, embedded systems, auto-
matic synthesis, compiler, hardware-software codesign, high-level
synthesis, binary translation.

I. INTRODUCTION

In the face of anticipated persistent cyber attacks it may
be desirable to preemptively isolate critical computing appli-
cations in hardware. There currently exists only one way to
accomplish this with sufficient hardware isolation: to create
a custom computing machine from scratch. The prohibitive
expense associated with such an undertaking can prevent all
but the most critical applications from realizing the benefit of
hardware isolation. In this paper we describe an investigation
into providing preemptive hardware isolation by automating
the transformation of binaries targeted for general-purpose
processors (GPPs) into circuitizable finite state machine with
datapath (FSMD) machine descriptions that are impervious to
many vulnerabilities associated with GPPs. The rest of this

paper is organized as follows: In Section II-A we describe the
preliminary model used to accomplish the automated transfor-
mation of programs targeted for GPPs into FSMDs. In Section
II-B we show how interrupt-driven binaries are handled under
this model, and in Section II-C show how interrupt-driven
programs targeted for GPPs can be transformed into circuiti-
zable machine descriptions containing concurrent FSMs that
arbitrate for resources on a shared datapath. In Section III
we describe a prototype tool that implements the model for
programs targeted for the Intel 8051. In Section IV we describe
related work, and in Section V we discuss our findings and
future research endeavors.

II. TARGETED PROGRAMS AS CUSTOM COMPUTING
MACHINES

Every GPP is endowed with a set of functional capabilities
that are bound at the time that it is fabricated. Any program
targeted for a given GPP exercises a subset of these capabil-
ities. In essence, any program targeted for some GPP can be
thought of as the specification of a custom computing machine
couched in terms of said GPP.

For example, imagine that we have some GPP called G and
some program P targeted for it. P represents the programmatic
form of a solution to some problem. G contains a set of
functional capabilities (FG) that were bound at fabrication
time. When G hosts P it exercises some subset of functionality
(FP ) that is available in FG . If we were to observe G as
it is hosting P and take note of what G does in order to
actualize the solution to the problem, we would obtain a
clear idea of the nature of a custom computing machine
capable of solving the problem. Moreover, the details of
this custom computing machine would be expressed in terms
of the functional capabilities and operational semantics of
G. In some cases it is possible to obtain enough a priori
knowledge about P and G such that an hardware description
language (HDL) description of a custom computing machine
functionally equivalent to G hosting P can be automatically
generated.

A. A Preliminary Model

A program targeted for a GPP is a representation of the
solution to some problem as applied to said GPP. When

mastro
Text Box
Secure & Resilient Cyber Architectures ConferenceMITRE, McLean, VA, October 29, 2010



the GPP begins executing instructions contained within the
program, it assumes a sequence of steps on the path toward
actualizing the solution represented by the program. This
effectively sequential behavior simplifies the development of
programs because it emphasizes causality. It is also what
allows the creation of a custom FSMD that is functionally
equivalent to some program hosted on a GPP.

In the following discussion we use the term configuration
to describe the logical state of a processor at a specific point
in time. Suppose that we wish to create a custom device that
is functionally equivalent to some program P when hosted by
G. Let us assume that G does nothing but host P . G therefore
begins executing P immediately after it has assumed its initial
configuration as a result of a power-on (PON) event, and
continues to execute P until P completes or another power
event occurs. We denote the initial configuration assumed by G
before executing P as C0, and each subsequent configuration
assumed by G on the path toward completion of P is denoted
as C1..CN . The program P is composed of a sequence of
instructions I that dictate the order of operations on G. We
denote the initial instruction contained in P as I0, and assign
some designation IX to each other instruction contained in P .

Suppose that P consists entirely of a single loop containing
the three instructions I0, I1, and I2. Each of these instructions
exercises some functionality provided by G that is necessary
to accomplish the goal of P . All we need to know beyond
this is that instruction I0 is the first instruction to be executed
by G. For the sake of this example we shall assume that I2 is
an unconditional branch to instruction I0, and that I1 is not a
branching instruction.

Given our simple program P as described above, the se-
quence of configurations assumed by G when executing P is
depicted as follows:

C0I0C1I1C2I2C3I0C4I1C5I2C6I0...

We will hereafter refer to the sequence of configurations
assumed by G when executing the instructions in P as the path
of P over G. Each configuration assumed by G is assigned a
unique number because the effect of any given instruction I
on the configuration of G may not always be the same, even
between different executions of the same instruction.

No a priori knowledge regarding the configuration assumed
by G after executing a given instruction I is necessary in order
to create a custom FSMD that is the functional equivalent of P .
It is critical that the configuration assumed by G after executing
instruction I is manifested correctly regardless of variance in
the operands. This coherence of configurations is achieved by
ensuring that each instruction is implemented correctly in the
FSMD that is produced.

We can now provide a partitioning of the path of P over
G that enables us to create an FSMD that is functionally
equivalent to P over G. Although the path of P over G may
be arbitrarily long, it contains only three unique instructions.
If we regard each unique instruction and the application of the
effects of that instruction to the configuration of G as a state
in an FSM, we can define the states for that FSM as follows:

[C0] [I0C] [I1C] [I2C]

where the four states in the FSM representing the path of P
over G are shown in brackets. A depiction of this FSM is
shown in Figure 1.
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Fig. 1. FSM Representing P Over G

The first state (S0) in Figure 1 represents the initial config-
uration assumed by G after a power event, and therefore has
no instruction I that predicates the configuration C0. Every
other state in the graph represents the execution of some
instruction I from P , and the application of the effects of that
instruction to the configuration of G. In order to complete the
FSMD, we must define the datapath that is controlled by the
FSM. This is derived by examining each of the instructions
in P and determining which resources of G are exercised by
these instructions. This requires detailed knowledge of the
operational semantics of G. It is imperative that knowledge
of G be acquired well beyond that which is available in the
instruction set architecture (ISA) in order to ensure that all
functionality is implemented correctly in the resultant FSMD.

1) Security Implications: Consideration of the graph in Fig-
ure 1 reveals that the implementation of our FSMD does not
contain program memory, and will therefore not require logic
to fetch or decode instructions. This logic can be omitted from
the resulting device because each instruction in P has been
encapsulated in a state within the FSMD. The FSMD always
knows its current state and configuration, and can therefore
determine its next state. This is important in computer security
domains because the set of states that can be assumed by the
resultant FSMD is known and fixed, and the logic used to
provoke a transition of state is bound into the computing fabric
of the resulting device and is therefore immutable.

It is likewise the case that custom FSMDs generated using
this technique do not require access to external data memory.
Any data memory used by P can be integrated into the
same circuitizable FSMD description representing P over
G. This is important in computer security domains because
the original program P is transformed into a custom, self-
contained computing machine that cannot be compromised
using conventional attack vectors. The resulting device will
also be capable of operating at a higher frequency because no
off-chip memory accesses are required.

It is also important to note that knowledge acquired by
an adversary regarding exploits targeting the ISA of G is
no longer of any value when attacking an FSMD generated



by this technique. This is because the generated FSMD is
customized to the needs of a particular program P , and only
those functional capabilities of G necessary to host P are
considered when generating an FSMD of P over G. None
of the architected resources available in G are themselves
architected in the resultant FSMD, and the operation of the
resultant FSMD can be affected only by a device that is phys-
ically connected to its interface. This dissolution of the ISA
characteristics of G is due to the fact that this technique regards
the binary targeted for G as an intermediate representation (IR)
in a sequence of IRs that ultimately lead to the generation of
a custom FSMD description.

2) Branching and Invocations: Absolute and conditional
branches are handled in a straightforward way under the
model. Absolute branches are a simple transition of state.
Conditional branches are handled by a test of that portion of
the datapath upon which the given condition is founded as per
the operational semantics of the host GPP.

Invocations (subroutine calls) are often implemented as
enhanced branching instructions. A simple means of handling
invocations requires some form of last-in-first-out (LIFO)
mechanism in the resulting FSMD to store the return destina-
tion. This replicates the behavior of the typical GPP. Because
our goal is to describe a custom computing machine, however,
such a simplistic approach can be undesirable.

3) Recursion: Recursion is useful when describing the
solution of certain classes of problems. Care must be taken to
ensure that the limitations of the recursive portions of the so-
lution are thoroughly understood before executing the solution
on a GPP or implementing the solution as a custom FSMD.
Creating a custom FSMD that is functionally equivalent to a
program containing recursion can be accomplished in multiple
ways.

One way to approach the problem is to replicate the invo-
cation resources available on the GPP in the resultant FSMD.
In this case the FSMD will exhaust its runtime resources if
and only if the host GPP exhausts its runtime resources. A
disadvantage to this approach is that the spatial requirements
imposed by replicating the invocation resources available on G
can be difficult or impossible to accommodate when creating
an FSMD destined for a space-constrained environment.

Another approach is to allow the designer to specify the
resources required for recursion in the FSMD. The designer
can then use the generated FSMD to ensure that the resource
limits are correct.

B. Interrupts

Interrupt-driven software is a vital component of modern
digital systems. In this section we describe a model for pro-
ducing custom FSMDs from interrupt-driven software. Details
concerning the implementation of interrupt mechanisms on
specific GPPs are ignored so that we can discuss generally how
to transform interrupt-driven programs into custom FSMDs.

A program containing interrupt-driven components can be
modelled as co-operating FSMs sharing a common datapath.

In this model the main thread of execution and each inter-
rupt service routine (ISR) is a separate FSM that performs
work when it possesses the execution quantum. Consider the
program P1 in Figure 2. This program contains two ISRs
named isr_inc and isr_dec, and the main thread of
execution. The main thread simply initializes registers r1 and
r2, enables interrupts, and continually transfers the values of
r1 and r2 to ports p0 and p1 before incrementing the value
of r2. The purpose of isr_inc is to increment r1 and
then perform the logic necessary to effect a return from the
interrupt. The purpose of the isr_dec ISR is to decrement
r1 and then perform the logic necessary to effect a return
from the interrupt.

entry: ; entry point
1. ljmp work

org 3
isr_inc: ; irpt 0 ISR

2. inc r1
3. reti

org 19
isr_dec: ; irpt 1 ISR

4. dec r1
5. reti

org 256
work:

6. mov r1,#0 ; init r1
7. mov r2,#0 ; init r2
8. mov ie,#85h ; enable irpts 0,1

loop:
9. mov p0,r1 ; emit r1
10. mov p1,r2 ; emit r2
11. inc r2
12. sjmp loop

Fig. 2. Program P1

The three units of the program in Figure 2 are represented
as three discrete FSMs shown in Figure 3. State S0 appearing
as the initial state in each ISR is a synthetic state that is
added to denote a ready state during which no processing of
functionality present in the ISR is performed. This synthetic
initial state is analogous to the initial state of the main thread in
program P1. In each case, S0 is the state assumed by the FSM
before any instructions representing functionality contained in
the software from which the FSM was derived are executed.

The three FSMs appearing in Figure 3 are separate ma-
chines. Although a state named S0 appears as the initial state
of each of these machines, each S0 is a distinct state from
which a single transition to another state in the same machine
can be made. In Figure 3, for instance, the FSM representing
the ISR isr_dec can only transition from state S0 into state
S4.

In order to correctly model the interrupt-driven program P1

found in Figure 2, we require a means of ensuring that only
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Fig. 3. Units of P1 Over G as FSMs

one of the FSMs in Figure 3 is active at any given clock cycle
during the operation of the resulting FSMD representing P1

over G. We also must ensure that the correct FSM is activated
at any given clock cycle during the operation of the resulting
FSMD. These functions are accomplished by an entity called
the executive arbiter (EA).

The role of the EA is to determine which FSM will execute
at any given clock cycle. The method employed by the EA
to determine which FSM will execute is dependent upon the
interrupt mechanism implemented on the target GPP. The EA
uses information gathered from interrupt sources, interrupt
status registers, and the interrupt mechanism employed by the
target GPP to select which FSM will be granted the quantum
for a given clock cycle. Once an FSM has been granted the
quantum, it uses its current state, coupled with the current
configuration of the FSMD, to determine the logic that should
be exercised and to potentially transition state.

As an example, assume that we are executing the program
depicted in Figure 3. Assume that this device is initially being

held in reset. No transitions or levels of external stimuli matter,
and no FSM in the device can be granted a clock cycle because
the EA is being held in reset. When the reset line to the device
becomes deasserted, the device is initialized, which includes
setting all FSM state registers to their respective S0 state. Once
initialization has completed, the EA begins the arbitration
process. At this point the wiggling of any interrupt sources
does not matter because device-specific interrupt enabling
appearing in program P1 at state S8 has not yet occurred,
so the EA will grant the clock cycle to the main FSM. The
EA will continue granting clocks exclusively to the main
FSM until it has completed S8. Once the main routine has
enabled interrupts in state S8, combinational logic tied to the
interrupt lines that source the interrupts will be used to update
interrupt status registers internal to the FSMD. At each clock
the EA will use the information contained in the interrupt
status registers, along with the interrupt mechanism employed
by the host GPP, to determine which FSM will be granted the
ability to exercise logic.

The arbitration performed at each clock cycle ensures that
only the correct FSM is permitted to perform work at any
given time. The particulars of what constitutes correctness in
this case are determined by the algorithm employed by the
GPP for which the software was targeted.

C. Concurrency

We have devised a method whereby existing software tar-
geted for sequential, synchronous execution on a given GPP
can be transformed into a synchronous FSMD containing
concurrently executing FSMs sharing a datapath. This method
requires no modification of the original program.

Consider program P1 in Figure 2. This program is com-
posed of three distinct units of execution: the main unit,
and two units represented by the ISRs named isr_dec and
isr_inc. Examination of this program reveals that each of
these units modifies register r1. We wish to create an FSMD
wherein all of these execution units are operating concurrently.
We therefore need to devise a means wherein coherency of the
resource r1 is maintained.

A straightforward way to ensure coherence of r1 is to
guard the resource with an arbiter. Such devices are commonly
employed in digital systems, and can be designed into the
datapath of an FSMD. The arbitration logic employed by
the device must be expressed in such a way as to ensure
exclusivity of access while preventing starvation. Once we
have devised such an arbiter, we can design our datapath
in such a way that all access to the resource under guard
(r1) is permitted only when granted by the arbiter. We then
inject states into the FSM of each device that might access
the resource under guard. These synthetic states represent the
requesting of access by an FSM, waiting for the grant to
be received from the arbiter, and relinquishing of the grant.
The FSM representing the isr_dec unit of P1 appearing
in Figure 3 would appear as shown in Figure 4 after being
transformed in the manner described.
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Sp = Request r1 arbiter grant

Sw = Wait for r1 arbiter grant

Sv = Relinquish r1 arbiter grant

Fig. 4. Unit isr dec of P1 Over G as Concurrent FSM

The synthetic states appearing in the FSM of isr dec ensure
that the FSM does not access r1 unless it has been granted
access from the arbiter guarding r1. The proper design of
this arbiter ensures exclusivity of access to r1. Since all units
of program P1 access r1, each of the other FSMs must be
modified to observe the same access protocol illustrated in
Figure 4.

When all FSMs have been modified in the manner de-
scribed, there remains no further need for arbitration of
execution among the FSMs in the device. The per-cycle
arbitration that was imposed upon the co-operating FSMs has
been reduced to the per-resource arbitration of concurrently
executing FSMs. Each unit depicted in Figure 3 will act
independently, exercising logic on every clock cycle. Each
FSM that was derived from an ISR in the program will have
exclusive access to the interrupt source that was previously
monitored by the EA and used to initiate execution of the ISR.
To put it another way, each unit representing an ISR will now
monitor its own source and engage in the work represented
in the ISR on its own volition. Each ISR is also responsible
for “resetting” itself and returning to the ready state upon
completion of the logic contained in the ISR. The details of
this housekeeping are dependent upon the GPP for which the
ISR was originally targeted.

We have now transformed what was originally a program
containing a main thread and two ISRs into an FSMD contain-
ing three concurrently executing units. We were able to easily
determine the hazards contained within program P1, but it is
not always possible to easily identify hazards in a program.
In the case where the designer has intimate knowledge about
the operation of and the resources used by P , she can provide

enough information to ultimately generate the FSMD from P .
The designer can then use the generated FSMD to verify that
the specification of the hazards in P was correct.

III. THE MADGEN PROTOTYPE

We have created a prototype tool that transforms programs
targeted for the Intel 8051[6], [7], [8] into circuitizable FS-
MDs. The MADGEN (MAchine Description GENerator) pro-
totype takes as inputs the ROM image of an 8051 program in
Intel .hex format and an optional set of constraints. The MAD-
GEN prototype produces a circuitizable VHDL description of
an FSMD that is functionally equivalent to the program as
hosted on the 8051. The prototype does not partition the input
program into a component hosted on a GPP and a circuitizable
component; MADGEN transforms the entire input program
into a single, self-contained, circuitizable machine description
in order to achieve a level of hardware isolation sufficient for
even the highest risk computing applications.

Because MADGEN analyzes the ROM image of the input
program, the user is free to employ any toolchain capable of
producing an .hex image for the 8051. MADGEN is designed
to make it easy to implement bindings for hosts other than the
8051. The Intel 8051 was chosen for this initial investigation
because it is often used in modern USB controllers, and
is representative of a class of GPPs that are ubiquitous in
embedded systems.

A. Operational Overview

When presented with the ROM image of an 8051 program,
MADGEN analyzes it to determine the nature of the program.
MADGEN creates a control-flow graph (CFG) representing
the main thread of execution of the input program, and
then decorates this CFG with dataflow information gleaned
from performing abstract interpretation of the main thread. If
analysis of the main thread reveals that interrupts are being
used, MADGEN will create a separate CFG for each ISR
and perform abstract interpretation of the ISR. MADGEN
then performs a sequence of analyses and transformations to
ultimately produce an FSMD representing the input program.
The user is able to guide MADGEN in this process via
constraints specifying the analyses and transformations to
be performed. MADGEN treats each thread in an interrupt-
driven binary as a discrete computing machine that resides
on a shared computing fabric. If the user wishes to transform
an interrupt-driven 8051 program into an FSMD containing
concurrently executing units as described in Section II-C,
MADGEN requires that the user provide a set of hazard
constraints.

IV. RELATED WORK

Converting software binaries into machine descriptions of
varied form is an active research area [1], [2], [3], [4], [5], [9],
[10], [11], [12], [13]. However, each of these efforts performs
a partitioning of the input binary into a component that will
be hosted on a GPP and a component that is circuitizable.
This approach is insufficient where computer security is a



governing concern because it does not provide an adequate
level of application isolation. Moreover, the prevailing mindset
of these efforts is to reduce an input binary into “kernels”
of computationally intensive functionality that are circuitized,
with the use of these kernels being controlled and coordinated
by software hosted on a GPP. This is undesirable from a
security perspective because overall control of the resultant
product depends upon the integrity of software hosted on a
GPP.

V. CONCLUSIONS

We have demonstrated that automated preemptive hardware
isolation of critical computing applications can be provided
by transforming binaries targeted for GPPs into circuitizable
FSMDs. Because the FSMDs generated by this process contain
no program memory and do not require access to external
data memory, the level of isolation provided is such that vul-
nerabilities predicated upon the manipulation of memory are
effectively eliminated. Because the method used to generate
these FSMDs is automated, the temporal investment required
to build a custom computing machine from a binary targeted
for a GPP is significantly reduced. This method will therefore
increase the domain of computing applications that can benefit
from preemptive hardware isolation.

We have described a technique for transforming interrupt-
driven binaries into synchronous FSMDs containing concur-
rently executing units that arbitrate for resources on a shared
datapath. This technique reduces the coarse-grained inter-
leaved execution employed on GPPs to fine-grained arbitration
for specific resources without the need for swapping context
between executing units. This facilitates the rapid development
of applications that leverage the concurrency inherent in the
FPGA and will be useful in reducing interrupt servicing
latencies in time-critical GPP applications deployed on the
FPGA.

We have created a prototype (MADGEN) that transforms
programs targeted for the Intel 8051 into circuitizable FSMDs.
MADGEN generates the description of custom, self-contained,
circuitizable computing machines that are impervious to many
vulnerabilities associated with GPPs. Experiments conducted
with MADGEN indicate that for some 8051 programs it
generates an FSMD that uses less area and is capable of
operating at a higher frequency than the soft implementation
of an 8051 processor.
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